Cargando…

Interferon-γ facilitates hepatic antiviral T cell retention for the maintenance of liver-induced systemic tolerance

Persistent exposure to liver pathogens leads to systemic antigen-specific tolerance, a major cause of chronicity during hepatotropic infection. The mechanism regarding how this systemic tolerance is maintained remains poorly elucidated. In a well established mouse model of hepatitis B virus (HBV) pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Zhutian, Li, Lu, Chen, Yongyan, Wei, Haiming, Sun, Rui, Tian, Zhigang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886358/
https://www.ncbi.nlm.nih.gov/pubmed/27139489
http://dx.doi.org/10.1084/jem.20151218
Descripción
Sumario:Persistent exposure to liver pathogens leads to systemic antigen-specific tolerance, a major cause of chronicity during hepatotropic infection. The mechanism regarding how this systemic tolerance is maintained remains poorly elucidated. In a well established mouse model of hepatitis B virus (HBV) persistence–induced systemic tolerance, we observed that interferon-γ (IFN-γ) deficiency led to complete loss of tolerance, resulting in robust anti-HBV responses upon peripheral vaccination. The recovery of vaccine-induced anti-HBV responses was mainly caused by the retained antigen-specific CD4(+) T cells rather than decreased functional inhibitory cells in the periphery. Mechanistically, HBV persistence induced sustained hepatic CD4(+) T cell–derived IFN-γ production. IFN-γ was found to promote CXCL9 secretion from liver-resident macrophages. This T cell chemokine facilitated the retention of antiviral CD4(+) T cells in the liver in a CXCR3-dependent manner. Hepatic sequestrated antiviral CD4(+) T cells subsequently underwent local apoptotic elimination partially via cytotoxic T lymphocyte–associated protein 4 ligation. These findings reveal an unexpected tolerogenic role for IFN-γ during viral persistence in the liver, providing new mechanistic insights regarding the maintenance of systemic antigen-specific tolerance during HBV persistence.