Cargando…
Quantitative Structure Activity Relationship study of the Anti-Hepatitis Peptides employing Random Forests and Extra-trees regressors
Antimicrobial peptides are host defense peptides being viewed as replacement to broad-spectrum antibiotics due to varied advantages. Hepatitis is the commonest infectious disease of liver, affecting 500 million globally with reported adverse side effects in treatment therapy. Antimicrobial peptides...
Autores principales: | Mishra, Gunjan, Sehgal, Deepak, Valadi, Jayaraman K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450245/ https://www.ncbi.nlm.nih.gov/pubmed/28584444 http://dx.doi.org/10.6026/97320630013060 |
Ejemplares similares
-
Identification of Penicillin-binding proteins employing support vector machines and random forest
por: Nair, Vinay, et al.
Publicado: (2013) -
Classification of anti hepatitis peptides using Support Vector Machine with hybrid Ant Colony OptimizationThe Luxembourg database of trichothecene type B F. graminearum and F. culmorum producers
por: Mishra, Gunjan, et al.
Publicado: (2016) -
A text mining approach to detect mentions of protein glycosylation in biomedical text
por: Shukla, Daksha, et al.
Publicado: (2012) -
Prediction of protein-mannose binding sites using random forest
por: Khare, Harshvardan, et al.
Publicado: (2012) -
Recent trends in antimicrobial peptide prediction using machine learning techniques
por: Shah, Yash, et al.
Publicado: (2017)