Cargando…
Tunable band-gap structure and gap solitons in the generalized Gross-Pitaevskii equation with a periodic potential
The tunable band-gap structure is fundamentally important in the dynamics of both linear and nonlinear modes trapped in a lattice because Bloch modes can only exist in the bands of the periodic system and nonlinear modes associating with them are usually confined to the gaps. We reveal that when a m...
Autores principales: | Huang, Changming, Dong, Liangwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778046/ https://www.ncbi.nlm.nih.gov/pubmed/29358596 http://dx.doi.org/10.1038/s41598-018-19756-6 |
Ejemplares similares
-
Localization in Periodic Potentials: From Schrödinger Operators to the Gross-Pitaevskii Equation
por: Pelinovsky, Dmitry E
Publicado: (2011) -
Composition Relation between Nonlinear Bloch Waves and Gap Solitons in Periodic Fractional Systems
por: Dong, Liangwei, et al.
Publicado: (2018) -
Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation
por: Wang, Haotian, et al.
Publicado: (2021) -
Derivation of the Time Dependent Gross–Pitaevskii Equation in Two Dimensions
por: Jeblick, Maximilian, et al.
Publicado: (2019) -
A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations
por: Thalhammer, Mechthild, et al.
Publicado: (2012)