Cargando…
UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts
Human populations feature both discrete and continuous patterns of variation. Current analysis approaches struggle to jointly identify these patterns because of modelling assumptions, mathematical constraints, or numerical challenges. Here we apply uniform manifold approximation and projection (UMAP...
Autores principales: | Diaz-Papkovich, Alex, Anderson-Trocmé, Luke, Ben-Eghan, Chief, Gravel, Simon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853336/ https://www.ncbi.nlm.nih.gov/pubmed/31675358 http://dx.doi.org/10.1371/journal.pgen.1008432 |
Ejemplares similares
-
layerUMAP: A tool for visualizing and understanding deep learning models in biological sequence classification using UMAP
por: Jing, Runyu, et al.
Publicado: (2022) -
Umap and Bismap: quantifying genome and methylome mappability
por: Karimzadeh, Mehran, et al.
Publicado: (2018) -
Application of Aligned-UMAP to longitudinal biomedical studies
por: Dadu, Anant, et al.
Publicado: (2023) -
Dimensionality reduction by UMAP to visualize physical and genetic interactions
por: Dorrity, Michael W., et al.
Publicado: (2020) -
BRAQUE: Bayesian Reduction for Amplified Quantization in UMAP Embedding
por: Dall’Olio, Lorenzo, et al.
Publicado: (2023)