Cargando…
Navigational Behavior of Humans and Deep Reinforcement Learning Agents
Rapid advances in the field of Deep Reinforcement Learning (DRL) over the past several years have led to artificial agents (AAs) capable of producing behavior that meets or exceeds human-level performance in a wide variety of tasks. However, research on DRL frequently lacks adequate discussion of th...
Autores principales: | Rigoli, Lillian M., Patil, Gaurav, Stening, Hamish F., Kallen, Rachel W., Richardson, Michael J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493935/ https://www.ncbi.nlm.nih.gov/pubmed/34630238 http://dx.doi.org/10.3389/fpsyg.2021.725932 |
Ejemplares similares
-
Dynamic Navigation and Area Assignment of Multiple USVs Based on Multi-Agent Deep Reinforcement Learning
por: Wen, Jiayi, et al.
Publicado: (2022) -
Hopf Bifurcations in Complex Multiagent Activity: The Signature of Discrete to Rhythmic Behavioral Transitions
por: Patil, Gaurav, et al.
Publicado: (2020) -
Navigation in Unknown Dynamic Environments Based on Deep Reinforcement Learning
por: Zeng, Junjie, et al.
Publicado: (2019) -
Deep reinforcement learning-aided autonomous navigation with landmark generators
por: Wang, Xuanzhi, et al.
Publicado: (2023) -
Co-actors Exhibit Similarity in Their Structure of Behavioural Variation That Remains Stable Across Range of Naturalistic Activities
por: Rigoli, Lillian M., et al.
Publicado: (2020)