Cargando…
Morphological components detection for super-depth-of-field bio-micrograph based on deep learning
Accompanied with the clinical routine examination demand increase sharply, the efficiency and accuracy are the first priority. However, automatic classification and localization of cells in microscopic images in super depth of Field (SDoF) system remains great challenges. In this paper, we advance a...
Autores principales: | Du, Xiaohui, Wang, Xiangzhou, Xu, Fan, Zhang, Jing, Huo, Yibo, Ni, Guangmin, Hao, Ruqian, Liu, Juanxiu, Liu, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799896/ https://www.ncbi.nlm.nih.gov/pubmed/34417804 http://dx.doi.org/10.1093/jmicro/dfab033 |
Ejemplares similares
-
Trichomonas Detection in Leucorrhea Based on VIBE Method
por: Du, Xiaohui, et al.
Publicado: (2019) -
Automatic classification of cells in microscopic fecal images using convolutional neural networks
por: Du, Xiaohui, et al.
Publicado: (2019) -
A Data-Efficient Framework for the Identification of Vaginitis Based on Deep Learning
por: Hao, Ruqian, et al.
Publicado: (2022) -
Fast and accurate automated recognition of the dominant cells from fecal images based on Faster R-CNN
por: Zhang, Jing, et al.
Publicado: (2021) -
Synchronous Phase-Shifting Interference for High Precision Phase Imaging of Objects Using Common Optics
por: Zhao, Jiaxi, et al.
Publicado: (2023)