Cargando…
To switch or not to switch – a machine learning approach for ferroelectricity
With the advent of increasingly elaborate experimental techniques in physics, chemistry and materials sciences, measured data are becoming bigger and more complex. The observables are typically a function of several stimuli resulting in multidimensional data sets spanning a range of experimental par...
Autores principales: | Neumayer, Sabine M., Jesse, Stephen, Velarde, Gabriel, Kholkin, Andrei L., Kravchenko, Ivan, Martin, Lane W., Balke, Nina, Maksymovych, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419588/ https://www.ncbi.nlm.nih.gov/pubmed/36132496 http://dx.doi.org/10.1039/c9na00731h |
Ejemplares similares
-
The role of lattice dynamics in ferroelectric switching
por: Shi, Qiwu, et al.
Publicado: (2022) -
Resistive switching behavior in α-In(2)Se(3) nanoflakes modulated by ferroelectric polarization and interface defects
por: Hou, Pengfei, et al.
Publicado: (2019) -
Ferroelectric switching in ferroelastic materials with rough surfaces
por: Lu, Guangming, et al.
Publicado: (2019) -
Avalanche criticality during ferroelectric/ferroelastic switching
por: Casals, Blai, et al.
Publicado: (2021) -
Multilevel polarization switching in ferroelectric thin films
por: Sarott, Martin F., et al.
Publicado: (2022)