Cargando…
Traffic Speed Data Imputation Method Based on Tensor Completion
Traffic speed data plays a key role in Intelligent Transportation Systems (ITS); however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS). In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, t...
Autores principales: | Ran, Bin, Tan, Huachun, Feng, Jianshuai, Liu, Ying, Wang, Wuhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381990/ https://www.ncbi.nlm.nih.gov/pubmed/25866501 http://dx.doi.org/10.1155/2015/364089 |
Ejemplares similares
-
Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data
por: Ran, Bin, et al.
Publicado: (2016) -
Imputation of spatially-resolved transcriptomes by graph-regularized tensor completion
por: Li, Zhuliu, et al.
Publicado: (2021) -
Multi-Lane Differential Variable Speed Limit Control via Deep Neural Networks Optimized by an Adaptive Evolutionary Strategy
por: Feng, Jianshuai, et al.
Publicado: (2023) -
Imputing Missing Data in Hourly Traffic Counts
por: Shafique, Muhammad Awais
Publicado: (2022) -
ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion
por: Pan, Xiutao, et al.
Publicado: (2021)