Cargando…
driveR: a novel method for prioritizing cancer driver genes using somatic genomics data
BACKGROUND: Cancer develops due to “driver” alterations. Numerous approaches exist for predicting cancer drivers from cohort-scale genomics data. However, methods for personalized analysis of driver genes are underdeveloped. In this study, we developed a novel personalized/batch analysis approach fo...
Autores principales: | Ülgen, Ege, Sezerman, O. Uğur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142487/ https://www.ncbi.nlm.nih.gov/pubmed/34030627 http://dx.doi.org/10.1186/s12859-021-04203-7 |
Ejemplares similares
-
PANACEA: network-based methods for pharmacotherapy prioritization in personalized oncology
por: Ulgen, Ege, et al.
Publicado: (2023) -
pathfindR: An R Package for Comprehensive Identification of Enriched Pathways in Omics Data Through Active Subnetworks
por: Ulgen, Ege, et al.
Publicado: (2019) -
CogNet: classification of gene expression data based on ranked active-subnetwork-oriented KEGG pathway enrichment analysis
por: Yousef, Malik, et al.
Publicado: (2021) -
PRODIGY: personalized prioritization of driver genes
por: Dinstag, Gal, et al.
Publicado: (2020) -
Integrated bioinformatics analysis of validated and circulating miRNAs in ovarian cancer
por: Dogan, Berkcan, et al.
Publicado: (2022)