Cargando…
MarkerCount: A stable, count-based cell type identifier for single-cell RNA-seq experiments
Cell type identification is a key step toward downstream analysis of single cell RNA-seq experiments. Although the primary objective is to identify known cell populations, good identifiers should also recognize unknown clusters which may represent a previously unidentified subpopulation of a known c...
Autores principales: | Kim, HanByeol, Lee, Joongho, Kang, Keunsoo, Yoon, Seokhyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233224/ https://www.ncbi.nlm.nih.gov/pubmed/35782735 http://dx.doi.org/10.1016/j.csbj.2022.06.010 |
Ejemplares similares
-
Machine learning based anti-cancer drug response prediction and search for predictor genes using cancer cell line gene expression
por: Qiu, Kexin, et al.
Publicado: (2021) -
Hierarchical cell-type identifier accurately distinguishes immune-cell subtypes enabling precise profiling of tissue microenvironment with single-cell RNA-sequencing
por: Lee, Joongho, et al.
Publicado: (2023) -
Role of lymphoid lineage cells aberrantly expressing alarmins S100A8/A9 in determining the severity of COVID-19
por: Lee, Joongho, et al.
Publicado: (2022) -
Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers
por: Townes, F. William, et al.
Publicado: (2020) -
DDR-coin: An Efficient Probabilistic Distributed Trigger Counting Algorithm
por: Kim, Seokhyun, et al.
Publicado: (2020)